1048 CHAPTER 15 Multiple Integrals

15.2 EXERCISES

1-6 Evaluate the iterated integral. 17-22 Evaluate the double integral.
5 [x 2 [y .
1. J] fn (8x — 2y) dy dx 2. fn JO x*ydx dy 17. ﬂ xcosydA, Disboundedbyy =0, y=x? x=1
D
R w/2 [x 18. 2+ 2y)dA, Disboundedbyy=x,y=x>x=0
3. JOI [(;xe’ dx dy 4, L/zfoxsinydydx £f(x ) 18 bounded by y = %, y = 7, X

5. JOI fo‘:cos(ﬁ) dt ds 6. fol f:/mdw dv 19 '[;[ y'dh,

D is the triangular region with vertices (0, 1), (1, 2), (4, 1)

. 20. ( ( xydA, D is enclosed by the quarter-circle
7-10 Evaluate the double integral. o

D
7 || xzi sdA. D={xy) [ 0=x=40=y=x} y= VI =% x>0, and the axes
’ 21. U (2x — y) dA,
. D
8. JJ Qx+y)dA, D={x,y) [ l<sy<2y—-l<x<l} D is bounded by the circle with center the origin and radius 2
D
22, U ydA, D is the triangular region with vertices (0, 0),
D

9. [[erda D={(xy |0=y<30=x=y)

3

(1, 1), and (4, 0)

10. J}‘y\/xz—y2 dA, D={(xy) |0<x=<20<y<u}

A 23-32 Find the volume of the given solid.

23. Under the plane 3x + 2y — z = 0 and above the region

) ) enclosed by the parabolas y = x?and x = y?
11. Draw an example of a region that is

(a) type I but not type II 24. Under the surface z = 1 4+ x”y” and above the region
(b) type II but not type I enclosed by x = y*and x = 4

25. Under the surface z = xy and above the triangle with

12. Draw an example of a region that is vertices (1, 1), (4, 1), and (1, 2)

(a) both type I and type II

(b) neither type I nor type II 26. Enclosed by the paraboloid z = x* + y? + 1 and the planes
x=0,y=0,z=0,andx + y=2

13-14 Express D as a region of type I and also as a region of

type II. Then evaluate the double integral in two ways. 27. The tetrahedron enclosed by the coordinate planes and the

plane2x +y + z =4
13. “ xdA, Disenclosed by the linesy = x,y = 0,x = 1 28. Bounded by the planes z = x, y = x,x + y = 2,andz = 0
D
29. Enclosed by the cylinders z = x% y = x? and the planes
14. “ xydA, D is enclosed by the curves y = x% y = 3x z=0,y=4
D

30. Bounded by the cylinder y* + z*> = 4 and the planes x = 2y,
x = 0, z = 0 in the first octant

15-16 Set up iterated integrals for both orders of integration. 31. Bounded by the cylinder x* + y* = 1 and the planes y = z,
Then evaluate the double integral using the easier order and x = 0, z = 0 in the first octant

explain why it’s easier. . ) 5 5 5 , )
32. Bounded by the cylinders x* + y* = r and y> + z° = r

15. ﬂydA, Disboundedbyy = x — 2, x = y?
D

. Use a graphing calculator or computer to estimate the
x-coordinates of the points of intersection of the curves
y = x*and y = 3x — x If D is the region bounded by these

16. [[ 2" dA, Disboundedby y = x,y = 4,5 =0
° o
curves, estimate ||, x dA.
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34. Find the approximate volume of the solid in the first octant
that is bounded by the planes y = x, z = 0, and z = x and
the cylinder y = cos x. (Use a graphing device to estimate
the points of intersection.)

35-38 Find the volume of the solid by subtracting two volumes.

35. The solid enclosed by the parabolic cylinders y = 1 — x?2,
y = x? — 1 and the planes x + y + z = 2,
2x +2y —z+ 10=0

36. The solid enclosed by the parabolic cylinder y = x? and the
planesz =3y,z =2 +y

37. The solid under the plane z = 3, above the plane z = y, and
between the parabolic cylinders y = x*and y = 1 — x?

38. The solid in the first octant under the plane z = x + y, above
the surface z = xy, and enclosed by the surfaces x = 0,
y=0,and x> + y>* =4

39-40 Sketch the solid whose volume is given by the iterated
integral.

39. L‘ fo“‘ (= x —y)dydx

2

40. f( )‘ ‘U‘ (1 = x) dy dx

[@d 41-44 Use a computer algebra system to find the exact volume
of the solid.

41. Under the surface z = x’y* + xy? and above the region
bounded by the curves y = x* — xand y = x* + x
forx =0

42, Between the paraboloids z = 2x* + y? and
z =8 — x? — 2y? and inside the cylinder x* + y? = 1

43, Enclosedbyz=1—x*>—y?andz =0

44. Enclosed by z = x*> + y?and z = 2y

45-50 Sketch the region of integration and change the order of
integration.

4. || [ 1t dxay a6. [ [ f(x.y) dy dx

47. J;"/z [ ey v ax a8. | fz for f(x, y) dx dy

49. J.lz f()mf (x,y) dy dx 50. f(: ‘;/:n f(xy) dy dx

51-56 Evaluate the integral by reversing the order of integration.

51. Jol Li e dx dy 52, f(: JXIZ Vy siny dy dx

SECTION 15.2 Double Integrals over General Regions 1049
53. H”M/y3 + 1dydx

0 JVx

(2 (1 3 _
54, JO f‘_/z y cos(x 1) dx dy

55. fl fﬂ/z cos x+/1 + cos?x dx dy
0 Jarcsin y

56. f( )8 [ edxdy
Sy

57-58 Express D as a union of regions of type I or type II and
evaluate the integral.

57. ff x2dA
D

59-60 Use Property 11 to estimate the value of the integral.

59. ﬂ\/4 —x2y2dA, S={(xy) |x*+y*<1,x=0}
N

60. ﬂ sin*(x + y) dA, T is the triangle enclosed by the lines
T

y=0,y=2x,and x = 1

61-62 Find the averge value of f over the region D.

61. f(x,y) = xy,
and (1, 3)

D is the triangle with vertices (0, 0), (1, 0),

62. f(x,y) = xsiny,
y=x%andx =1

D is enclosed by the curves y = 0,

63. Prove Property 11.

64. In evaluating a double integral over a region D, a sum of
iterated integrals was obtained as follows:

reeyyaa=[ " s ardy + [0y vy

Sketch the region D and express the double integral as an
iterated integral with reversed order of integration.
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1050 CHAPTER 15 Multiple Integrals

65-69 Use geometry or symmetry, or both, to evaluate the 68. (| @+ x3y* — y2sinx) dA,

double integral.

—

65. ﬂ(x+2)dA, ={(x,y)\|x|+\y|<1}

p={y [0=y=yo—¥} *

(ax® + by* + Va?— x2) dA,

Oeoi— U ©

=[—a,a] X [—b,b]

66. ﬂ JRT = xT = )2 dA,
D

D is the disk with center the origin and radius R [@4 70. Graph the solid bounded by the plane x + y + z = 1 and
, the paraboloid z = 4 — x* — y” and find its exact volume.

67. JJ (2x + 3y) dA, (Use your CAS to do the graphing, to find the equations of
D the boundary curves of the region of integration, and to
Distherectangle 0 s x < g, 0<y<»b evaluate the double integral.)

15.3 Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral j‘j‘R f(x,y) dA, where R is one of the
regions shown in Figure 1. In either case the description of R in terms of rectangular
coordinates is rather complicated, but R is easily described using polar coordinates.

y y
x+yr=1 Xy =4
R R
0 X
I
0 xX+yr=1 Y
FIGURE 1 @R={(r0)|0<r<1,0<0<2m} GV R={r.0)|1=r<2,0<0<m7}
y Recall from Figure 2 that the polar coordinates (r, ) of a point are related to the rect-
P(r, 6) = Plx, y) angular coordinates (x, y) by the equations
-
y rP=x*+y’ x = rcosf y =rsin@
N o
0 ¢ ¢ .
! ) (See Section 10.3.)
FIGURE 2 The regions in Figure 1 are special cases of a polar rectangle

R={(r0) | asr<ba<o<p}

which is shown in Figure 3. In order to compute the double integral ||R f(x,y) dA, where
R is a polar rectangle, we divide the interval [a, b] into m subintervals [r;—, r;] of equal
width Ar = (b — a)/m and we divide the interval [, 8] into n subintervals [6;_, 6;]
of equal width A = (B — a)/n. Then the circles r = r; and the rays 6 = 6; divide the
polar rectangle R into the small polar rectangles R;; shown in Figure 4.
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